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Dissipation of tidal energy in the moon was calculated under the
¢ ssumption that it can be represented as due to imperfect glasticity. If
the factor 1/Q for dissipation per cycle 1s assumed to be 1/100 for
distortional strain energy and 1/1000 for dila%}onal strain energy, the

heat now being generated in the moon by tides is less than .010 ergs/gm/yr.:

~l.e., negligible compared to redioactive heating by & chondritic composition.

Tidal heating would be comparable to radioactive heating, however, if the
semi-major axis of the moon;s orbit was one-third as great, sO the mechanism
does limit the possible history of the moon's orbit. Also, appreciable tidal
éissipation would cause thermal stresses and be conducive to conveetlon,
since it is much greater in the center than near the surface of the moon, and
hLas a non-uniform distribution in latitude (and longitude as well, it - ~ * °

rotation is synchronous with revolution). ‘ -

N

Urey and others [1959] suggested that tidal dissipation may have

significantly conbributed to heating of the moon's interior in the PasTs.
Kopal {1962] has caleulated the tidal dissipation in a moon assumed to be
¢ fluid with Newtonian viscosity. However, since tidsl distorticn is a
~elatively high frequency phenomenon, it seems & more modest extrapolati a
from experience to assume that tidel dissipation in the moon occurs &s. &
result of imperfect elasticity with a factor l/Q for dissipation per cycle

comparable to those estimated for the earth's mantle from polar tides, free

cscillations, and latitude veriation.
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The tldal disturbing function W ist
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A =2

C where Py is a Legendre Polynomial; ¥, $, A are radius, latitude, and

longitude ir. & noon-fixed coordinate sy-tem; the asterisked quentities

refer to the disturbing body; GM# is the product of the gravitational
corstant and the mass; and S is the arc from (g% ,M*%) to (f,A). Apply the

eddition theorem to equation (1):
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. Where P&m is the Legendre Assoclated Function and 60m is the Kronecker delta.
To obtain the variation in time of v¥,f% ¥, they must be expressed

in terms of the earth's orbit referred torthé moon. For the present orblt

+his is most simply done using the numerical values of coefficients as given

by Brown's theory of lunar motion, as has been recently described by

Harrison L1963]. Because we wish to investigate the effects of changing the

orbital parameters, and because the necessary computer subroutines had =already

ween written for another purpose (to degree of detail superfluous to the

present problem), we used & aifferent development [Kaula, 1961] based on the

assumption that the orbit can be considered a Keplerien ellipse at a

f:xed inclination to the moon's equator with secularly moving node and perigee.

For the tidal problem, the most significant omissions under this assumption

are short-period perturbations of the somi-major exis and the longitude by

+he sun. For the present orbit, the lergest of these terms (those contalning



-3 -
h in the arguments of equations (6)-(8) of Harrison [1963]) nave a ratio of
sbout 0.2 to the terms arising from ellipticity of the orbit. This ratio
would vary directly with veriation in the semi-major exis of the lunar orvit,
but would stay about the same with variationvin the inclination or
eccentricity. So 1t 1s consistent with the unavoidable crudeness of our
estimates of the disslpation factors l/Q to assume a purely elliptic orbit.
Apply the transformation of equations (7)-(28) in Kaula [1961] to

prl-1 Pon (sin ¢*%) [cos mA*, sin mh¥) in equation (2):
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Where a¥, e¥, 1%, (¥, o¥*, M¥ are the Keplerian elements of the earth's orbit

referred to the moon's equator and a departure point thereon fixed with

respect to inertlal space; F{mp(i*) and G&pq‘e*) are polynomials of the sine
and cosine of the inclination and of the eccenfricity,»respectively, and ©

is the "lunar sidereal time": the angle between the inertially fixed departure
point aﬁd the point on the moon from which selenographic longitudes are
measured. We assume the rate 5 to be constant, which is equivalent to

a:glecting the physical 1ibration.



We abbreviate equation (3) as:
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Where the single subscript g replaces the subscript pair p,q;

the amplitude

ol s
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and the rate

m& (/(Qlo)w + ( ‘QP*&) M*-}' m (J:l%’ é) (6)-

The strain energy per unit volume, divided into shear (or distortional)
and compressive (or dilatationsl) terms [p.12, Jeffreys, 19597

(7)

Lk
b= e T

~
summing over repeated subscripts. In equation ®), p 1is the rigidity, k
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is the bulk modulus, eij is the strain tensor and e’ij is the part of the

strain tensor expressipg departures from symmetry:
e',z e'r-—l- Sc' e
3 Zg Skk

where 6§35 1s the Kronecker delta.

If the tidal disturbing function is expressed as a sum of spherical

ha:c‘mcn:l.cs:‘bC ﬂ .
W=2+'D (s A Bosw+ B, (D v
I=a ey :

the strain tensor e, at any point (¥,8,\) can be expressed &as

U bme . Cyhos
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where Giij&mc,s is the response of & planetary model of specified shear

modulus, bulk modulus, and density to a unit coefficient in the tidal

4disturbing function.

(8)

(9)

(10)
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Comparing equations (4) and (9), we have:
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Substituting equations (10), (11), (12) in equation (7) end sorting

out the algebra which results obtains:
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For any particular term of subscripts 4,m,u,v,g,h, the energy

dissipated in one cycle of duration on/(o pog T %u ) will be:

- 'QTFD Su,,,%w /Qs + CMm wh

szw ¥
-L\ 'Umauvk / Q§ i Czham / Qo

] (15)
and in one cycl of duration 21/ (cmg uvh)'

. w15, /o + C%,,awk/@ 1

F \g‘um?vwk Q + 4}mb~w)\

] (16)
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To obtain the contributions to en:rgy dissipation per unit time,
multiply equations (15) and (16) by th- sbsolute values of the rates per

unit time, |c&m8 +0 |. Sum over all subscripts to obtein

uvh|
the mean dissipation rate at a particular point fixed in the moon.

and -
‘ c-ung G\ wh

/mw\ o

HAE,

If the rotation is synchronous with revolution, as exists at present,

vm
gy

(17)

|y i

1* e . i
O¥e MT+ 2= =0 (18)

there are terms which will contribute only through their amplitude Blmg but
not through their rate cimg. In the synchronous case, & reference longitude
must be fixed, Making this reference longitude the mean direction of the

ecarth sets zero all terms containing sin {m@n* + M¥ + % - 8)} and sets unity

Py

all terms containing cos {m(w¥* + M¥¢ + (¥ - G)]: 1.e., in equation (10) the

sontribution to ALm (t) will be a for 4-m even and O for L-m odd, and to

img
3yp (t) it will be O for l-m even a:i:ld'-:sa.‘Dmg for 4-m odd. Practically the only

term for which this effect is significant is (1,m,p,q9) = (2,2,0,0).

PR - R TS S P
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In addition, there will be degeneracies for m = O in all cases and for
m # O in the synchronous case, requiring the combination of terms before
proceediﬁg as in equations (13)-(16). 1In these cases, the rate for the term
of subscripts (L,m,p,q) will be the negative of the rate for the term of
subseript (4,m, {-m-p, -g). If the rate is teken as that of the (4,m,p,q)

term, then the amplitude for the cosine coefficlent will be:

{n
ﬁ/m - d/m/a * {AD ﬂfmé (19)

¢

and for the sine coefficlent:

bxmﬁ = y

where the subscript correspondence is h with (p,q) and i with (&-m-p, -q),

L

™m
dlmi (20)

and 8ymh Bgmi are computed by equation (5). Theﬁ equation (lh) must be

modified so that b&mg’ buvh coefficients appear in front of éij&ms’ eijuvs’

etc. terms in place Of‘a{mg’ 8vh"

Another set of degeneracles occuring in the synchronous case arlses
becanse terms of subseript (&, ™ 0 4) will have vates
equal to terms of subseript (4, m2i, p-1, q), where 1 1s any integer.
Including terms for which the disturbing function rate is zero in
effect makes the energy dissipation rate a function of the constant vaive of
the strain, which ralses the question of whether strains from qther thar tidal
causes should be consildered as well. OSince we are interested in the
dissipation over geological durations of time, these terms perheps ghould
be omitted because in such time we would expect non-oscillqtiﬁg strains to

be removed by anelastic processes. But, then the dissipation rate obtaired

would be an absolute minimum for the agsumed Q. The moments of inertia



a2

- 11 -
of the moon indicate that it now contalns strains larger than tidal, so
leaving in the non-oscillating tidél terms should yield a dissipation rate

unlikely to be too high.

The quantities a 4=2,nm=0,1,2 where calculated from

c b4
g’ mg’
equations (5) and (6), for a variety of lunar orbits, using subroutines

for F{mp (i*) and G&p

satellite orbits, and computing the rates w¥, M¥, (* by the methods

q (e*) originally devised for enalysis of close

described in Kaula [1961].

! .
The strain tensors '613 Lo eiilm were calculated using the formulation

of the earth tide problem of Alterman and others [1959], which has also

been used by Takeuchi and others [1962] and Longman [1963]. In this

formulation, the basic variables are the radisl factors of vector spherical
harmonic expressions of the displacements, stresses, and potentlal terms:

¥yo of the radial displacement; yé,of the compressive stress; ¥3. of the -
tangential displacement; Y, of the she.r stress; ¥s, of the potential;

vg» of the potential gradient less the contribution thereto of the radial
displacement. The equations of equilibrium then become a system of six first

order equations:

dy;
.ﬁ_ = P "gj (21)

b

The P,, ere functions of ¥, k, w, g, and p. Three columns of Pij have terms

J
of O(qu), so the requirement of regularity at the origin eliminates three
constants of integration. The three surface conditions of zero tangential

stress, zero radlal stress, and the potential gradient being related to the

poetntial as a spherical hermonic in free space make the problem determirate.
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After solving equation (21) numerically for the yi’s corresponding to a

{

particular harmonic Y.{m =PS 1’ the contribution to the strain matrix

€. 1is calculated by (here 6 is colatitude, ¢ is longitude, and A is

i3
k-3u) Bg

RO
% 2——3’\6\'{' P 39’“ %

- 2% |36, Y,
o~ ZJT;% * Psmé <Sl'n9 S + 0t 5’53\3@

= glm ZU l*’)l S(m
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- _% égxm 3%, (22)
“op ~ et (&%yf Y55y

| 3%
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o 38,(,"
Sep” M \34

€

Equation (22) can be derived using the equations on page 56 of Love [1927],
applying & factor of 1/2 to the off diagonal componeunts to be consistent

with tensor convention. The Gi 3 Lm‘s from the Ym's were used in equation (1k).




- 13 -
The pole tide suggests a Q of more than 100 for the earth at a lh-month

sericd [p.162, Munk & MacDonald, 1960], while the latitude variations

indicate a Q of about 4O at the same period [p.148, Munk & MacDonald, 1960;

pp.255-259, Jeffreys, 1959]. The free oscillations of the earth indicate Q's

of 170 to LOO for periods less than en hour [Benioff and others, 1961;

Ness and others, 1961], except for a Q of 7500 for the soo, the only mode

which is purely compressive [Ness and others, 1961]. Models for rock creep
and_Lymnity acz]
proposed by Jeffreys and Crempin [1960]5and J. R. MacDonald [1961]Asuggest

Q's between 60 and 100 for semi-monthly and monthly periods. A shear Qg

of 100 thus seems & reasonable compromise. Considering that excitation from

the atmosphere and oceans may maintain the Soo free oscillation [Negs and others,
19617, we assume a compressive Q¢ of 1000. .

The strain energies were calculated for several lunar models pfoposed
by Harrison [1963]. However, since the uncerteinty in Q reduces this problem
o one of estimating order of magnitude, this discussion will be limited to
a homogeneous moon of density 3.34 gms cm‘3, rigidity 7.38 x 10+t dynes cm‘e,
gnd bulk modulus 1.23 X 1012 dynes cm-a. The Love numbers obtained for <this
nodel by the numerical solution of equation (15) were .034k for h, .0195 for kK,
and .0095 for L. |

The thermal histories of lunar models with chondritic composition have

been calculated by G. J. F. MacDonald [1959]. Even with a cold origin, These

models come very close to melting at depths in the moon exceeding 500 km.
The chondritic composition used had radiocactive contents of 8.0 x 1o'h,

1.1 x 10'8, and 4.4 x 10-8 g/g for potassium, uranium, and thorium, respectively,
which yield a thermal energy output of 1.59 ergs/g/year at present and

12.8 ergs/g/year k.5 x 107 years ago. Rence for tidel dissipation to be
significant, it should contribute on the order of 5 ergs/g/year, or .04 ergs/

cm3/day.
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The results for the present orbit of the moon are shown in Figure 1
in the form of maps of the energy dissipation at four levels within the
moon. Since the dissipation is symmetric about the equator and two
meridians at right engles, ﬁe need show only one octant for each level.
The evident features are firstly that tae tidal dissipation is at preseﬁt a
negligible sourcé of heat, and secondly that the distribution of the
heating is extremely non-uniform both radially and laterally. This
variability of distribution suggests that if the moon's orbit had ever
been such that the overall heating was appreciable, large thermal stresses
would have resulted, leading to convection or some other form of mass mction.

The amplitudes and rates were therefore calculated for different
orbital specifications. In_turn each element was varied, holding the
others fixed at the present values: 1) the semi-major axis (holding the
rotation synchronous with revolution about the earth); 2) the eccentricity;
3) the 1nélination; and 4) the rotation rate. The results are displayed in
Figure 2, in the form of curves showing variation in the average ratlio to the
present dissipation with variation in the orbital elements. The variation
is particularly marked with variation in the semi-major axis. If the semi-
major axis were only one-third as great as it is now, the criterion of

. Ok ergs/cms/day would be exceeded for most of the moon. At the secular

acceleration calculated by Munk & MacDonald [1960], the moon would have

been at this distance about 10q years &ago.

The pattern of energy dissipation shown in Figure 1 is composed of
cven degree harmonics symmetric about the equator: (4,4), (4,2), (4,0),
(2,2), end (2,0). In a moon close encugh that heating by tidal dissipation
was large enough to cause convection, the 2d degree terms in its mass

distribution would be determined mainly by the gravitational attraction of

the earth. However, the fourth degree terms would be determined

s ——— i ————— A —— = — oo
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by the convectlve pattern. Tt therefore will be of interest when
veriations in the gravitational field and external form of the moon are
better determined, to f£ind out whether these fourth degree terms are
markedly larger than other terms, such ras the third degree terms. If they
are, it would be a stron% indication that the moon was once close enough
for heating by tidal dissipation to cause convection, and hence would lend
further evidence as to the moon's origin.

In conclusion, we can say that heating by tidal dissipation is currently
insignificant (unless Q factors from the earth's mantle are wrong by &
factor of about 102), but that this study confirms the suggestlon of Urey
end others [1959] that it may have been important in the past when the moon

came much closer to the earth.
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